Gili Greenbaum (giligreenbaum.wordpress.com) is a CEHG postdoctoral fellow in the lab of Noah Rosenberg. Gili completed his B.Sc. in mathematics and philosophy at the Hebrew University of Jerusalem and his M.Sc. and Ph.D (Physics and Ecology departments) at Ben-Gurion University, Israel. He is interested in population-level evolutionary dynamics and complex-systems theory, and is working to understand how complex spatial structuring impacts evolutionary processes.
Can you tell us a bit about yourself, personally and professionally?
I grew up in the Galilee in Northern Israel. There, I spent a lot of my time turning over rocks to see what was under them and following ants to see where they were going. I was also very much interested in math. Eventually, I started my academic route at the Hebrew University of Jerusalem, where I studied both Mathematics and Philosophy. During my studies, I also worked for the Society for Protection of Nature in Israel, so as to remain connected to the natural world. I worked with nature-education and hiking activities for kids and teenagers. After finishing my B.Sc., I joined the Israel Trails Committee, where I was working on developing hiking trails, particularly new long-distance trails.
In order to bring together the various disciplines that interest me – mathematics, evolutionary biology, and conservation biology – I decided to focus on mathematical population genetics, joining the Physics and Ecology Departments at the Sede Boker campus of Ben-Gurion University on an inter-disciplinary fellowship. Although I worked mainly on theoretical and methodological problems, I kept grounded by collaborating on conservation projects.
How did you end up here? How did you first become interested in genetics and science?
Ever since I heard about it (don’t quite remember when that was), I thought evolution was the coolest idea ever. I still get dizzy when I think too deeply about it, biologically, mathematically or philosophically. For a long time, I wasn’t sure what would be my research focus, and I explored different topics (from math and physics all the way to philosophy and history), but when I had to settle on a field for my graduate studies, it was clear to me that I would study evolutionary theory. I always liked reading popular science books, with perhaps Richard Dawkins and Douglas Hofstadter having the most impact, and I believe that these early readings played a significant role in steering me towards a career in science.
Can you tell us about your current research and what you hope to achieve with it?
During my Ph.D. I was lucky to observe and think about several different biological systems in different parts of the world, such as Asiatic wild ass, Przewalski’s horses, Nubian Ibex, collared lizards, bats, and even Acacia trees and other plant systems. These experiences have helped me appreciate the complexity of many natural systems, and be aware of the difficulties of understanding and modeling evolutionary processes in real-world systems.
My work is focused on developing approaches for inference and prediction of population genetics that incorporate the structural complexities, at the population level, that are more often the rule rather than the exception in natural systems. In my work, I try to draw ideas from complex systems theory, particularly network theory.
One of the projects that I have been working on is to develop a data-driven network-based methodology for inference of population structure that minimizes the a priori biological assumptions needed, that is applicable to whole-genome datasets and that can describe simultaneously many hierarchical levels of population structure. For example, analyzing a world-wide Arabidopsis thaliana, we were able to describe very fine-scale population structures, sometimes restricted to single rivers or adjacent to specific cities, but also retain the context of the coarser world-wide structure.
Besides inference of population structure, I am interested in the evolutionary consequences of structured populations when the structure is complex and does not conform to simple topologies, such as in the Island Model or the Stepping-Stone Model. For example, under a given complex population structure, I am interested in understanding which types of evolutionary processes are more likely to occur (e.g. global selection, local adaptation, erosion of genetic diversity, etc.). I am looking into connecting theory on generative network models to theory of population structure, by analyzing population genetic properties of such models under a coalescent-theory framework. This line of work can be particularly useful in the context of conservation, since our goal in conservation is not only to maintain endangered populations, but also to consider their evolutionary trajectories.
Were there people (or one person) in particular to whom you would attribute your professional success?
I have really been fortunate to be mentored by fantastic people. In my Ph.D. studies, I was mentored by Alan Templeton, a Professor at Washington University. We spent many days in the Ozarks, catching collared lizards and talking about (almost) all of science. These chats made me appreciate the fact that being a specialist in a scientific field and having a broad scientific interest are not necessarily in contradiction. Now, at Noah Rosenberg’s lab, I am again lucky to find myself mentored by a researcher who is both an expert and retains an immensely large scientific scope (check out our lab’s library!). I am hoping that some of the abilities of these great people–to be experts and, at the same time, be involved and interested in many topics–will rub a bit onto me.
What are the differences between the US and your home country (or the country of your previous study)? Have you enjoyed your time at Stanford so far?
Stanford is a fantastic place to do science. So much cutting-edge stuff is going on all around you. Hopefully, you’ll get infected by some of it.
What advice would you offer to other grad students or postdocs who are considering pursuing a similar educational and career path as you?
Keep doing what you are most interested in. That’s as much as anyone can ask, I guess, and in academia, that is really your mission. Sometimes it seems complicated, and there are struggles, but in the end it actually is pretty simple.
Can you speak a bit to the role you see CEHG playing on Stanford campus?
CEHG is all about combining different perspectives to better understand evolution and genetics, an approach I truly believe in. The scientific community today is huge, and continuously expanding, and CEHG helps tie together different points in this expanding scientific space so we can make some sense of the bigger picture.
What are your future plans? Where do you see yourself professionally in the next 5 or 10 years?
My goal is to start my own lab, and continue exploring and expanding evolutionary theory. In particular, I would like to address the current issues that are on the minds of conservationists, and develop ideas that can help us address some of the evolutionary consequences of the Anthropocene.
Tell us what you do when you aren’t working on research and why. Do you have hobbies? Special talents? Other passions besides science?
I like being outside, hiking long-distance trails. I hiked long trails in in Greenland and Iceland, across Europe, Central and Eastern Asia, and the Israel National Trail is, of course, a favorite. Haven’t gotten to the US long trails yet. Nowadays, with my two boys, I prefer less long and less harsh trails, but I am learning to enjoy other things on shorter hikes, such as the way spider webs stick to your fingers and how funny some acorns are.