Hannah Frank is a CEHG postdoctoral fellow in the laboratory of Scott Boyd. She completed her bachelor’s degree at Harvard University and her PhD at Stanford University in Elizabeth Hadly’s lab where she studied the ecology and evolution of bat-infection interactions, particularly in Costa Rica. Her postdoctoral research focuses on the comparative genomics of the adaptive immune system of non-model organisms, with a particular emphasis on bats.
Can you tell us a bit about yourself, personally and professionally?
I grew up in Pasadena, CA where I spent most of high school volunteering as a docent at the Los Angeles Zoo before going to Harvard to study Organismic and Evolutionary Biology and catch a lot of Anolis lizards as part of my undergraduate research. After college, I lived in New Zealand for a year on a Fulbright, studying the hematology of a threatened, endemic reptile called a tuatara. They’re the closest relatives to snakes and lizards that’s not a snake or a lizard and they are only found in New Zealand. Look them up! Finally, I came to Stanford where I did my PhD in Elizabeth Hadly’s lab on the ecology and evolution of the relationship between bats and their infections.
I am now a postdoctoral fellow in Scott Boyd’s lab in the pathology department where I am continuing my research on bats with a focus on their adaptive immune systems, as well as expanding my inquiry into other thoroughly non-model organisms. (Capybaras here I come!)
What got you interested in genetics and science? Did you want to be a scientist as a child?
I have always been a total science nerd generally, but I was always really interested in animals and thought I would be a veterinarian since I was a small child. Both of my grandfathers were physician researchers and, as a kid, I borrowed histology slides from the high school biology teacher to look at under the microscope. In high school, I volunteered as a docent at the Los Angeles Zoo, leading tours and teaching people about the animals, which made me fall in love with ecology and evolution. I also loved molecular biology, but thinking I would eventually be a veterinarian, I focused on ecology and evolution through undergrad and decided to do a postgraduate fellowship studying eco-immunology. In between undergrad and the fellowship, I worked as a veterinary technician. I was very torn about whether to pursue a PhD, a DVM (doctor of veterinary medicine) or both. I actually did not decide between veterinary school and a PhD (or both) until the day my grad school decision was due. At that point I figured that I would work on something that had nothing to do with health and that I’d given up on the medical side of my interests forever. Fortunately, my PhD work and my postdoc work has allowed me to marry my interests pretty nicely. (So to the stressed out students out there – everything works out!)
Can you tell us about your current research and what you want to achieve with it?
Broadly, I am very interested in how animals’ environment and behavior impact their evolution, in particular as it relates to disease. Bats are a particularly interesting study system for these sorts of questions and for their relationship with people. On the one hand, they are incredibly diverse, both in terms of number of species (1300+ and counting!) and their ecology (only 3 species eat blood; some eat fruit, some bugs and some even fish). This makes them very important for ecosystem function (e.g. pollination, pest control, seed dispersal) and targets of conservation. On the other hand, they are also the reservoirs of a number of viruses that are highly lethal to humans but that do not seem to adversely affect the bats (e.g. Marburg fever, rabies, SARS, Hendra virus, Nipah virus).
Therefore, understanding how all of this ecological diversity translates to differences in infections and species’ responses to their pathogens can help us protect bats, humans and the environment.
In my PhD, I focused on the ecological aspects of this relationship (as well as understanding how humans mediate disease risk for the bats and themselves). I also started a project examining genomic positive selection in response to pathogens in bats globally, linking my ecological studies to evolutionary time scales via genomics. I am continuing this line of inquiry, trying to understand which genes are under selection in which lineages and linking those differences with host biogeography and pathogen identity. I am also delving into the adaptive immune system which helps the body recognize specific pathogens and derives its diversity from gene rearrangements and somatic mutation, making it hard to study from germline sequences. I hope to learn more about how bats recognize and fight pathogens so we can help both bats and humans.
What are your future plans? Where do you see yourself professionally in the next 5 or 10 years?
I really enjoy university settings – doing research, teaching and mentoring others and finding out new and interesting things about the world. I hope to one day be running my own lab, likely focused on investigating host adaptation to pathogens. When I started my PhD on bats, I was pretty sure it would be a temporary thing, but they have grown on me, so perhaps in 5-10 years, I will still be working with them. (Who doesn’t love working with highly intelligent, slow growing, nocturnal, flying, potentially rabid study organisms?) I might need to pick something a little more experimentally tractable too though.
Were there people (or one person) in particular to whom you would attribute your professional success?
I have been fortunate to have had a number of amazing mentors who have helped get me to where I am now. My undergraduate advisor, Jonathan Losos, was the person who helped me realize that I might want to pursue research as a career and has remained a really supportive mentor even as I enter my postdoc. I was also amazingly lucky to have benefited from the guidance and encouragement of Farish Jenkins Jr., my vertebrate anatomy professor. He passed away my first year in grad school, but he was a big part of why I did a PhD. My advisors in New Zealand, Nicola Nelson and Anne LaFlamme, really helped clarify to me that I could unite my disparate interests and gave me the opportunity to do a project that I’d conceived of myself. Finally, my PhD advisor, Elizabeth Hadly, is the reason I’ve grown into the independent scientist I have. She really encouraged me to pursue my interests, connect with others from disparate disciplines and figure things out which gave me the confidence to do just those things.
I had the benefit of getting to know Scott, my postdoctoral advisor, a few years ago as a member of my PhD committee, and I have been Boyd lab-adjacent for a couple of years. It has been really fun joining the lab – everyone is excited and helpful and they think about such different things than I do. Going from an ecology and evolution focused program to the pathology department has been fun and challenging. I’ve learned so much about immunology and the analyses that can be performed in well studied systems like humans and mice. I’d like to think I am also teaching my lab mates as well – I took Scott to catch bats and he said it was the first time he had ever done science outside!
What advice would you offer to other grad students or postdocs who are considering pursuing a similar educational and career path as you?
- Being a graduate student/ postdoc/ scientist can be the best job in the world and it can make you want to tear your hair out. Try not to lose sight of why you were excited in the first place and, if that does not excite you anymore, try and figure out what does. It’ll make it that much easier to deal with your nth experimental failure, the server that just crashed, or the realization that a little error you made two months ago means much of what you’ve done since is unusable.
- Don’t be afraid to explore and get creative. Talk to people who do different things from you; approach people at conferences who aren’t in your subfield. You never know what interesting ideas you might get! (Or in my case, a husband – we met at the International Bat Research Conference. Yes, my family calls him “Batman.”) If you can’t find someone in your lab/ department/ school that’s doing what you want to do, don’t be afraid to reach out to people further afield.
- Learn how to code. It’s incredibly useful and surprisingly fun. (And I imagine much easier and less stressful to do if you’re not simultaneously trying to analyze data for a deadline.)
Can you speak a bit to the role you see CEHG playing on Stanford campus?

Hannah (right) at the 2016 CEHG Symposium. Image courtesy of Saul Bromberger & Sandra Hoover Photography
CEHG was really valuable to me during my PhD, helping me learn from people in really different but complementary disciplines to my own. I found an important collaborator on my work through attending his Evolgenome seminar and I always learn a ton from the CEHG symposium. My work is really interdisciplinary – I’m an evolutionary ecologist in a pathology department – and I really value the focus CEHG has on facilitating conversations and collaborations between people with different skill sets and expertise. In my current projects, I am working with evolutionary computational biologists, hematopathologists, conservation organizations and everyone in between; those sorts of inquiries can only happen when people are willing and excited to work on something new.
Tell us what you do when you aren’t working on research and why. Do you have hobbies? Special talents? Other passions besides science?
For most of last year, when I wasn’t working on finishing my dissertation, my “hobby” was wedding planning. With that over, I have enjoyed getting back to baking, hiking and hanging out with friends and my 6 frogs, betta fish and bearded dragon.